Добавление линии тренда или скользящего



Добавление линии тренда или скользящего среднего к рядам данных


В Excel используются шесть различных видов линий тренда (аппроксимация и сглаживание), которые могут быть добавлены в диаграмму (Рисунок 18.11): 1) Линейная аппроксимация (Linear) — это прямая линия, наилучшим образом описывающая набор данных. Уравнение прямой у=ах+Ь, где а — тангенс угла наклона, b — точка пересечения прямой с осью у. Линейная аппроксимация применяется для переменных, которые увеличиваются или убывают с постоянной скоростью.
2) Логарифмическая аппроксимация (Logarithmic) хорошо описывает положительные, так и отрицательные величины, которые вначале быстро растут или убывают, а затем постепенно стабилизируется. Логарифмическая аппроксимация использует уравнение у=с* lnx+Ь, где с и b константы, In — натуральный логарифм.
3) Полиномиальная аппроксимация (Polynomial) используется для описания величин, попеременно возрастающих и убывающих. Ее целесообразно применять для анализа большого набора данных нестабильной величины. Степень полинома определяется количеством экстремумов (максимумов и минимумов) кривой. Полином второй степени может описать только один максимум или минимум. Полином третьей степени имеет один или два экстремума. Полином четвертой степени может иметь не более трех экстремумов. Полиномиальная аппроксимация описывается уравнением y=a+ciXi+C2X2++Cigx18, где a, Cj—Cjg — константы. Требуемая степень полинома задается в поле Степень (Рисунок ). Максимальная величина степени — 18.
4) Степенная аппроксимация (Power) дает хорошие результаты, если зависимость, которая содержится в данных, характеризуется постоянной скоростью роста. Примером такой зависимости может служить график ускорения автомобиля. Если в данных имеются нулевые или отрицательные значения, использование степенного приближения невозможно. Степенная аппроксимация описывается уравнением у=а * хn, где а и n — константы.
5) Экспоненциальную аппроксимацию (Exponential) следует использовать в том случае, если скорость изменения данных непрерывно возрастает. Однако для данных, которые содержат нулевые или отрицательные значения, этот вид приближения неприменим. Экспоненциальная аппроксимация описывается уравнением у= а • ebx, где а и b — константы.
6) Линейная фильтрация (Moving average) позволяет сгладить колебания данных и таким образом более наглядно показать характер зависимости. Такая линия тренда строится по определенному числу точек (она задается параметром Тонки (Period). Элементы данных усредняются, и полученный результат используется в качестве среднего значения для приближения. Так, если параметр Тонки равен 2, первая точка сглаживающей кривой определяется как среднее значение первых двух элементов данных, вторая точка — как среднее следующих двух элементов и так далее. Для расчета скользящего среднего используется уравнение у= (Aj+Aj_i++Aj_n+i)/n.



Содержание раздела